Approximation Schemes for Multi-Budgeted Independence Systems
نویسندگان
چکیده
A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Some classical optimization problems, such as spanning tree and forest, shortest path, (perfect) matching, independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. For two or more budgets, typically only multi-criteria approximation schemes are available, which return slightly infeasible solutions. Not much is known however for strict budget constraints: filling this gap is the main goal of this paper. It is not hard to see that the above-mentioned problems whose solution sets do not correspond to independence systems are inapproximable already for two budget constraints. For the remaining problems, we present approximation schemes for a constant number k of budget constraints using a variety of techniques: i) we present a simple and powerful mechanism to transform multi-criteria approximation schemes into pure approximation schemes. This leads to deterministic and randomized approximation schemes for various of the above-mentioned problems; ii) we show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a deterministic approximation scheme for k-budgeted matroid independent set; iii) we present a deterministic approximation scheme for 2-budgeted matching. The backbone of this result is a purely topological property of curves in R.
منابع مشابه
Optimization with More than One Budget
A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Some classical polynomial-time optimization problems, such as spanning tree and forest, shortest path, (perfect) matching, independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most ...
متن کاملAlgorithms for budgeted auctions and multi-agent covering problems
ACKNOWLEDGEMENTS I would like to thank my advisor, Vijay Vazirani, for all his guidance, and from whom I have learnt the most. Especially during the last two years, he has played the role of a great mentor and a friend, always giving the right advice at the right moment. His knowledge and wisdom about research and life is among the best, and I feel lucky to have acquired at least a few bits of ...
متن کاملBudgeted Matching and Budgeted Matroid Intersection Via the Gasoline Puzzle
Many polynomial-time solvable combinatorial optimization problems become NP-hard if an additional complicating constraint is added to restrict the set of feasible solutions. In this paper, we consider two such problems, namely maximum-weight matching and maximumweight matroid intersection with one additional budget constraint. We present the first polynomial-time approximation schemes for these...
متن کاملMulti-document Summarization via Budgeted Maximization of Submodular Functions
We treat the text summarization problem as maximizing a submodular function under a budget constraint. We show, both theoretically and empirically, a modified greedy algorithm can efficiently solve the budgeted submodular maximization problem near-optimally, and we derive new approximation bounds in doing so. Experiments on DUC’04 task show that our approach is superior to the bestperforming me...
متن کاملBiorthogonal wavelet-based full-approximation schemes for the numerical solution of elasto-hydrodynamic lubrication problems
Biorthogonal wavelet-based full-approximation schemes are introduced in this paper for the numerical solution of elasto-hydrodynamic lubrication line and point contact problems. The proposed methods give higher accuracy in terms of better convergence with low computational time, which have been demonstrated through the illustrative problems.
متن کامل